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Presentation Outline
Brief Overview of Ongoing CAC Research Activities
Motivation – Why Composable Data Centers?
What are challenges of Designing Composable Data Centers

UA Approach to Build a Composable System: 
– Just iIn Time Architecture (JIA)

– Prelinary Analysis and Evluation

Conclusions



• Autonomic Cyber Security (ACS)
– Tactical Cyber Immune System (TCIS)
– Autonomic Monitoring, Analysis and Protection (AMAP)
– Anomaly based Detection of Attacks on Wireless Ad Hoc Networks
• Resilient Cloud Services 
• Hacker Web: Securing Cyber Space: Understanding the Cyber Attackers 

and Attacks via Social Media Analytics

• IoT Security Framework
• Big Data Analytics 

• Big Data Cybersecurity
• High Performance Machine Learning Framework (HPMLF)
• Heart Modeling, Analysis, Diagnosis and Prediction

• High Performance Distributed Computing and Applications
– Just-In-Time Architecture (JITA) for Composable High Performance Data Centers
– Heart Cyber Expert System (HeartCyPert)
– Oil Well Data Analytics and Protection (OWDAP)
– Hurricane Continuous Modeling and Simulation Environment

On Going UA CAC Projects
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Composable 
Systems

Software 
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Homogene
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Virtualized

Cloud 1.0 Cloud 2.0

Cloud evolution – systems point of view

Systems of Insight 
workloads often have 
wide spectrum of memory 
requirements

Systems of Insight 
workloads create high 
east-west datacenter 
traffic

Systems of Insight 
workloads often 
require large, low 
latency storage
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Composable systems take advantage of rapid progress on 
network speed and acceleration

High bandwidth network and interconnect 
speed is expected to be comparable to 
PCIe speed by 2015-2017

Increased focus on east-west traffic 
accelerate adoption of 2-tier (spine-leaf) 
and 1-tier DCN architectures

High speed network enables storage disaggregation 
with zero penalty to performance
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Self-tuning could 
achieve 75% of optimal 
performance within 
minutes

JBOD 

Disaggregated fully 
non-blocking spine-leaf 
data center network 
based on SDN is 
available now (2014)M axeler FPG A  

A ccelerator 
(FSS, N atural 
R esources)

TM S SSD  
(FSS, IoT)
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(G enom ics, 

H ealthcare) High BW, Low 
Latency Network 
and Interconnect

Hyper-converged / 
Disaggregated
Components

Self tuned & Self Optimized

Datacenter Scale 
�Computer�

Software Defined Infrastructure
Resource Abstractions for Composable 

Systems

P8-CAPI (coherent insertion of 
accelerators)

A ctive Storage (hyperconverged) N ode
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CPU
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Building Blocks for Composable
System

Innovation platform: Agile, composable, disaggregated, 
heterogeneous, cloud-scale

High bandwidth Si 
Photonics links for 
east–west direct 
connections rewired 
using optical switches

Enabled by significant reduction in cost of bandwidth and virtualization advances.  
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Why Disaggregation?  
Resource Modularity

§ Easier to build & evolve
– Resources have different 

cycles/trends/constraints.
– Disaggregation enables independent evolution, 

the biggest driving force from vendor’s viewpoint

§ Fine-grained resource provisioning
– Current practice: replace/buy an entire server, 

rack, or even datacenter.
– Go buy some CPU blades at Best Buy® and 

plug them in.

§ Operational efficiency
– Datacenter as a single giant computer
– Higher utilization with statistical multiplexing

§ Reduces the need to optimize for “locality” of data to 
processing and hence lessens the need for careful 
placement of data & workload

§ Physical resource pooling: allows fail in place 
and reduce/lessen the need for field maintenance 
(especially when coupled with software defined 
everything)
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What are the challenges?

§Network: How fast should the network be?  How much latency 
could workload tolerate?

§Scalability: What is the right (sweet spot) scale of the 
disaggregation?  (chassis, rack, pod, datacenter)

§Quality of Service/Resiliency: What is the impact on the RAS?  
Are there new opportunities resulting from physical resource 
pooling?

§Circuit switching vs. Packet Switching: Can we leverage 
optical circuit switching (OCS)?

§Unified control plane/scheduler: How can we make sure the 
scheduling and placement of workload do not create conflicting 
data flow within the network due to disaggregation?
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What are the appropriate interconnect technologies for 
disaggregation?
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Intra Pod & 
Intra Datacenter 

Network

C PU

C PU

C PU

SSD

SSD

SSD

• Amdahl’s rule of thumb: every MHz of CPU 
needs to pair with 1 Mb/s of I/O

• 16 core @2.5GHz è 40 Gb/s 
• 32 core @2.5GHz è 80 Gb/s
• SSD: 100K+ IOPS, 100 us access 
latency (cf. HDD: 50 IOPS, 10ms 
access latency)

• Implications: 1000 VMs require 40 Tb/s 
bisection, 10 us access latency (port to port)

• MapReduce/Hadoop and large graph 
implementations within BigData, Analytics, 
and NoSQL generate large volume of east-
west traffic among Hadoop clusters

• Cross-sectional BW: Azure Pb/s, GCE 100 
Tb/s

Amin Vahdat (Google) in his keynote at 2014 Open Network Summit 
presented the case that the cross-sectional BW needs to be 100+ Tb/s and 
end-to-end latency < 10 us to support disaggregated SSD and large 
MapReduce workloads 

Network requirements: Cross-sectional BW: 100+ Tb/s, end-to-
end latency < 10 us
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• Hardware based, transparent to applications 

and OS/hypervisor

• Access as an I/O device based on direct 

integration through PCIe over Ethernet

• Global shared memory for disaggregated 

memory 

• Direct attached memory through Centaur 

(Power), CAPI (Power), and QPI (Intel)

• Hypervisor/container based:  transparent to 

applications and guest OS

• getMemory: e.g. remote swap RamDisk

• getGPU: e.g. through PCIe over Ethernet  

• Microservice/Application based: expose disaggregation 

details and resource remoteness directly to applications

• Resources exposed via high-level APIs (e.g. put/get 

for memory) using built-in processing element

• GetMemory (e.g. Memory as a Service)  as 

one of the OpenStack service

• Openstack service sets up channel 

between host and memory pool service 

over RDMA.

• GetGPU instance 

• Locate available GPU from GPU pool & 

host from host pool

• Establish channel between host and 

GPU through RDMA/PCIe and expose to 

applications via library or virtual device.

• Cloud-born applications already built using such APIs

Transparent to 
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UA Approach to Develop 
Composable Datacenters: 

JITA – Just in Time 
Architecture

Collaborators
UA: Ali Akoglu, Ivan Djordjevic, and Cihan Tunc
Colorado State University: H. J. Siegel



Research Issues
How to build disaggregated or composable data 

centers on the fly?
How to develop software architecture and resource 

management that can be customized dynamically to meet 
application SLO?
– Virtual Data Center (VDC)

How to leverage emerging optical interconnect 
technologies?

How to model and validate the performance of 
composable data centers?



JITA Technologies and Tools
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Research Thrusts

Thrust 1: JITA Design Approach
Thrust 2: Optical Interconnect Infrastructure

Thrust 3: Modeling, Analysis, and Simulation of JITA



Thrust 1: JITA Design 
Approach
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Just-In-Time Architecture (JITA)
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Scalable Architecture



Autonomic Computing

Analogous to Human 
autonomic nervous 
system

AC continuously 
monitors, analyzes, and 
diagnoses the managed 
system behavior and 
then takes proactive 
actions



Autonomic Component Architecture
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Cross-layer Autonomic Management
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Value of Service (VoS)

• Utility functions have been shown to be effective metrics in 
resource management, especially in an oversubscribed 
environment. 

• A primary difference of our VoS metric from utility techniques is 
the fact that the value metric allows us to consider the value of 
performing resource management at a particular time of the day or 
night as well as the actual operational costs of using the allocated 
resources at a given time.



VoS Examples
Value of Service (VoS) with respect to Performance and 

energy
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Energy value vs energy consumed 
(a) Peak time, (b) Non-peak time



JITA Scheduling Algorithm
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Our algorithm is based on the resource allocation choices that provide the highest task 
value divided by the amount of resources used, to better utilize the resources
Maximum Value-per-Total Resource (Maximum VPTR). 

Algorithm 1. Pseudo-code for the Max VPTR heuristic.
1. while the set of mappable tasks is not empty 
2. for each task in the set of mappable tasks
3. find the allowable VM configuration maximizing task VPTR
4. select task/VM pair that gives the highest VPTR
5. if selected task can start execution immediately 
6. then
7. assign selected task to VMs
8. else
9. create a place-holder for selected task using its resource allocation choice
10. remove selected task from mappable tasks
11. end while



JITA Scheduling Simulation 
Results
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The percentage of maximum VoS earned by
the heuristics in environments where the
number of cores in the system is varied from 128
to 384 and the amount of memory is fixed at 256
GB.

The percentage of maximum VoS earned by the 
heuristics in environments where the amount of 
memory in the system is varied from 128 to 
384 GB and the number of cores is fixed at 
256.



JITA Experiment Results
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JITA Experimental Results
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Total task execution time for workload 
1 (thousand seconds).

Total energy consumption by the executed 
tasks for workload 1 (in Mega Joules)



Thrust 2: Optical 
Infrastructure Design 

Approach



Optical Cell Design

Optical waveguides

Active vertical coupler (AVC)

Input

Output

Switching cell operation principle 



Optical Space Switch 



JITA Optical Interconnect 



End of Row (EoR) Topology



Optical End of Row (OEoR) Topology

StorageServer



Optical Top of Rack (OToR) Topology

StorageServer



Performance Modeling, Analysis 
and Simulation
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47 minutes

27 minutes

22 minutes

19 minutes

15 minutes

13 minutes
48 seconds
(on p730)

Bottleneck
CPU

Disk IO

Memory

Disk IO

CPU/Mem
ory, but 
software 
stack 
inefficent

8 minutes
44 seconds
(on 7R2)

7 minutes
50 seconds
(on 7R2)

6 minutes
41 seconds
(on 7R2)

CPU/
Memory

CPU/
Memory

Summary: Composable datacenter scale systems expose 
many more system knobs and need to be self-optimized 

02/10/2012

07/03/2012

02/05/2013

04/15/2013

Manual optimization of Terasort took 
18 months

Self-tuning could achieve 75% of 
optimal performance within minutes

Source: Duke Univ.

Many areas requires 
performance tuning

§ Hardware Configurations

CPU & Cache 
– Adopt SMT4 for Terasort
– Prefetch from 

L2/L3/memory to D-L1
– Large on-chip cache, memory and IO 

bandwidth
§ Storage

– Software RAID over 
LVM to reduce storage layer overhead

– Symphony round-robin 
scheduling algorithm to 
utilize disk arrays

§ JVM
– GC and jitting policy
– Heap size
– Enable Huge Page

§ Platform Symphony– Buffer related to reduce 
IO

– Smart scheduling
– Task granularity– Resource Allocation

§ Compression Algorithm
– Gzip à LZO 

àSNAPPY àLZ4
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DoD Applications Requirements & Capabilities 
+

OS Resource Requirements & Capabilities
+

Service Level Objectives

Workload Profiler & 
Management Console

Storage Compute/MemoryNetwork

Application 
workload 
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VDMS
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offer
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VDMS 
configured 
and ready

Workload provisioned

VD C   aggregated &   
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API
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Decision Making System Resources Pool

7
monitors & customize 
VDMS resources as 
needed to  enforce policies

A
pp

OS

Cross-layer Autonomic Management
• Aggregation 
• Orchestration
• Policy enforcement

JITA Example Workload Profile



Conclusions
Autonomic computing can paly an important role in 

designing composable data centers
Software Defined Infrastructures are a key technology to be 

leveraged in the development of software architecture and 
middleware

Optical Interconnect technology must be leveraged
Automated configuration and tuning are key design 

parameters



Questions?
Contact Dr. Hariri at

hariri@ece.Arizona.edu


